Monday, February 25, 2008

FRACTALES 1






La dimensión fractal

La medición de formas fractales (fronteras, poligonales, etc,) ha obligado a introducir conceptos nuevos relacionados con la teoria del caos que van más allá de los conceptos geométricos clásicos.

Dado que un fractal está constituido por elementos cada vez más pequeños, el concepto de longitud no está claramente definido: Cuando se quiere medir una linea fractal con una unidad, o con un instrumento de medida determinado, siempre habrá objetos más finos que escaparán a la sensibilidad de la regla o el instrumento utilizado, y también a medida que aumenta la sensibilidad del instrumento aumenta la longitud de la línea.

Como la longitud de la linea fractal depende de la longitud de instrumento, o de la unidad de medida que tomemos, la noción de longitud en estos casos, carece de sentido. Para ello se ha ideado otro concepto: el de dimensión fractal. Que en el caso de las líneas fractales nos va a indicar de qué forma o en que medida una linea fractal llena una porción de plano. Y que además sea una generalización de la dimensión euclidea. Sabemos que en geometría clásica un segmento tiene dimensión uno, un círculo tiene dimensión dos, y una esfera tiene dimensión tres. Para que sea coherente con lo dicho una línea fractal tiene que tener dimensión menor que dos (no llena toda la porción de plano). Y en los casos del conjunto de Cantor y de la curva de Koch menor y mayor que uno respectivamente: En el primer caso no llena todo el segmento de recta, y en el segundo es más largo. Sin embargo el caso del conjunto de Cantor es excepcional y no se puede considerar propiamente un fractal, en general lo que sucede es que la longitud de la curva fractal es superior al del segmento de recta que lo genera, y por tanto en general la dimensión fractal será un número comprendido entre uno y dos.

No comments: